icon

Call Now

86-755-26508999

icon

Email

tilo@3nh.com

icon

Time

8:00 AM - 5:30 PM (GMT+8)

Message

Consultation

About Us

3nh specializes in high-precision color measurement instruments, including colorimeters, spectrophotometers, and haze meters, serving industries like textiles, plastics, and coatings. With innovative R&D and global reach, we deliver reliable solutions for color management and quality control, trusted by customers in over 80 countries.

Test Charts

Test Charts Frequently Ask Questions

Compared to an analog model, digital gauges not only provide more accuracy, but also allow for greater repeatability and are easier to work with. Advanced digital gauges allow for features such as data storage and automatic calibration and statistical analysis. For these reasons, digital gauges are the preferred choice for professional applications.


The Colour Assessment Cabinet (CAC) is a controlled environment used for the visual evaluation of color wherein the light sources are consistent.


There is no generic mathematical formula for gloss value. Rather, it is measured directly with a gloss meter, which compares how strongly reflected light from a sample matches a standard (typically black glass with a known reflectance).


To operate the haze meter, first calibrate the instrument, clean the sample, position it correctly in the holder, and initiate the measurement. The instrument then shows the haze and overall transmittance readings.

Each haze test can take from 3 to 10 seconds depending on the device and the type of sample.


A spectrophotometer measures the full visible color spectrum (typically 400–700 nm). It offers significantly higher precision and enables detailed evaluations – including spectral curves, ΔE values, and color distance measurements. It is the preferred choice for demanding applications in labs or color development environments. learn more..

The core difference between a colorimeter and a spectrophotometer lies in their light measurement methods. A colorimeter measures color values based on the tristimulus method (e.g. LAB or RGB) and compares the sample to a reference. It's ideal for quick, repeatable measurements under consistent conditions – such as in production or incoming goods control.

When detecting color differences, the first factors to consider when selecting a light source include its stability, directionality, lifespan, and the effectiveness of the ultimately obtained spectral curve. The illuminant of a colorimeter is a fixed bulb, such as a tungsten lamp,LED light or a long-life xenon lamp. However, for the same color sample, the results displayed by the instrument vary under different light sources. This is because different light sources cause different absorption and reflection of light on the sample, leading to differences in how both the human eye and the instrument perceive the color. 

In general, the D65 light source is used in the application of coil steel inks for construction. The D65 light source is equivalent to average daylight. Most coil steel inks for construction are used outdoors, and sunlight is regarded as the standard light source in outdoor environments. For household appliance coil steel inks, due to their usage characteristics, they are mostly used indoors. Therefore, the A standard light source is adopted for color measurement of samples based on indoor lighting conditions. The A light source is a carefully specified tungsten light source. Other light sources, such as fluorescent light sources, can be used in many types of applications. For example, some textile factories use fluorescent light sources. Therefore, a reasonable light source should be selected as the mutually recognized measurement method based on actual usage conditions and user requirements. Once agreed upon by both parties, color measurement must be conducted under the same conditions. This helps reduce unnecessary systematic errors and human errors, achieving the optimal consistency in color measurement. 

The 3nh high-precision spectrophotometric colorimeter adopts a combined LED light source with long lifespan and low power consumption, which includes UV (ultraviolet) and UV-excluded options. This design can meet the color difference detection needs of different users and supports the selection of multiple light source modes.

Ensure the source, viewing angle, and background are all neutral and standardized, and the samples are clean, and positioned for a side-by-side comparison under each light condition.


The gloss meter is used to measure gloss at typical angles (typically 20°, 60°, or 85°). The instrument illuminates the material and measures the amount of light reflected and states the outcome in gloss units (GU), which is related to perceived brilliance.


An 18% gray background reduces distractions and color bias, helping in a more accurate assessment.